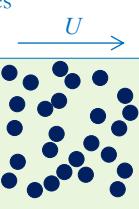
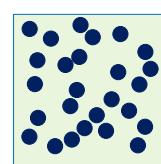

Rhéologie des suspensions

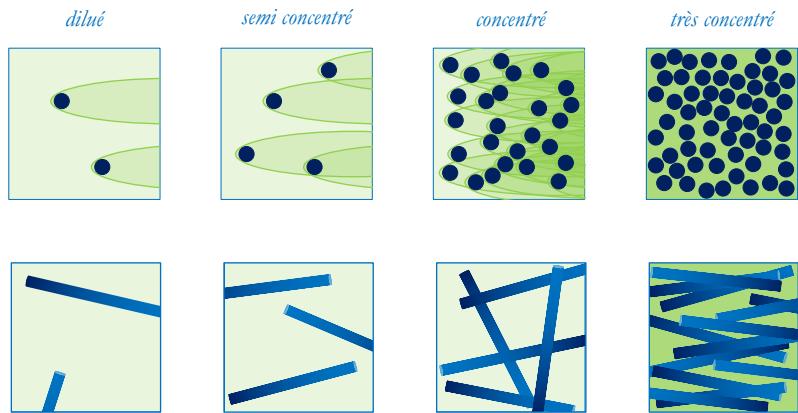
1



1

Rhéologie des suspensions

Effets statiques

Effets dynamiques



2

2

1

Les quatre régimes de concentration

3

3

Terminologie

$$\eta_{rel} = \frac{\eta}{\eta_0} \quad \text{Viscosité relative}$$

$$\eta_{sp} = \frac{\eta - \eta_0}{\eta_0} = \eta_{rel} - 1 \quad \text{Viscosité spécifique}$$

$$[\eta] = \lim_{\substack{\dot{\gamma} \rightarrow 0 \\ \phi \rightarrow 0}} \eta_{sp} \quad \text{Viscosité intrinsèque}$$

(ϕ : concentration)

$$[\eta] = 2.5 \text{ pour des sphères idéales rigides}$$

$$\eta_{red} = \frac{\eta_{rel} - 1}{\phi} \quad \text{Viscosité réduite}$$


4

4

Viscosité des suspensions de sphères dures

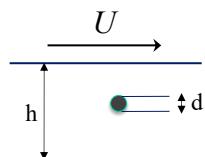
Rôle des particules, en termes de concentration et de forme, sur la viscosité d'une suspension : au repos, et sous cisaillement

Première approximation, quelques particules

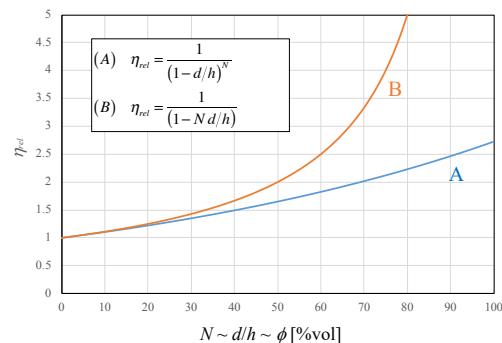
$$\text{Fluide seul : } \tau = \eta_{\text{fluide}} \dot{\gamma} = \eta_{\text{fluide}} \frac{U}{h}$$

Avec particule :

$$\tau = \eta_{\text{fluide}} \frac{U}{(h-d)} = \eta_{\text{fluide}} \frac{U}{h} \frac{h}{(h-d)} = \eta_{\text{fluide}} \underbrace{\frac{1}{(1-d/h)}}_{\eta_{\text{suspension}}} \dot{\gamma}$$

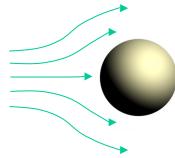
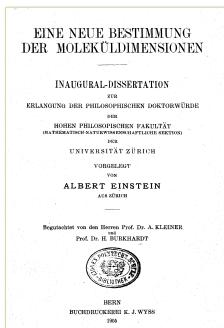

5

5


Viscosité des suspensions de sphères dures

Rôle des particules, en termes de concentration et de forme, sur la viscosité d'une suspension : au repos, et sous cisaillement

Première approximation, quelques particules



$$\eta_{\text{suspension}} = \eta_{\text{fluide}} \frac{1}{(1-d/h)}$$

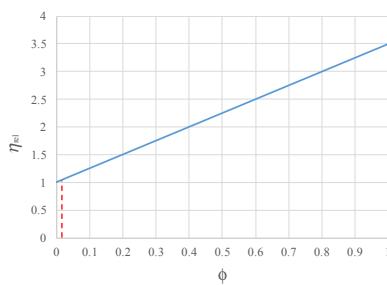
6

6

Viscosité des suspensions de sphères dures

$$\eta_{rel} = 1 + \phi \left(\frac{\eta_0 + 2.5\mu}{\eta_0 + \mu} \right) \text{ où } \mu \text{ est la viscosité des particules}$$

$$\text{Avec } \mu \gg \eta_0 : \eta_{rel} = 1 + 2.5\phi = 1 + k_e\phi$$


(mais pour une émulsion avec gaz, $\mu \ll \eta_0$: $\eta_{rel} = 1 + \phi$)

7

Viscosité des suspensions de sphères dures

$$\text{Loi d'Einstein} \quad \eta_{rel} = 1 + k_e\phi$$

k_e : coefficient d'Einstein (2.5 pour des sphères)
 ϕ : concentration

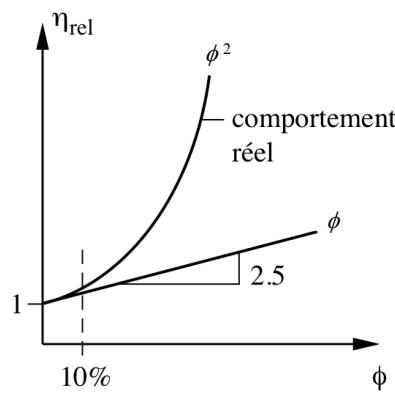
Valable aux faibles concentrations $\phi < 2 \text{ %vol}$

8

8

Suspensions monodisperses diluées

$$\eta_{rel} = 1 + k_e \phi \quad \text{solvant Newtonien}$$

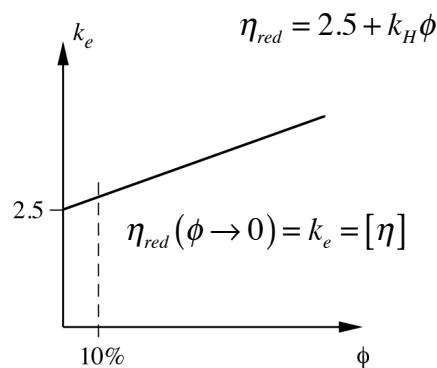

Type de particules	Valeur de k_e	Schéma des particules
Sphériques	$k_e = 2.5$	
Cubiques	$k_e = 3.1$	
Réseau de fibres (flux parallèle)	$k_e = 2L/d$	
Réseau de fibres (flux transversal)	$k_e = 1.5$	

9

9

Suspensions monodisperses semi-concentrées

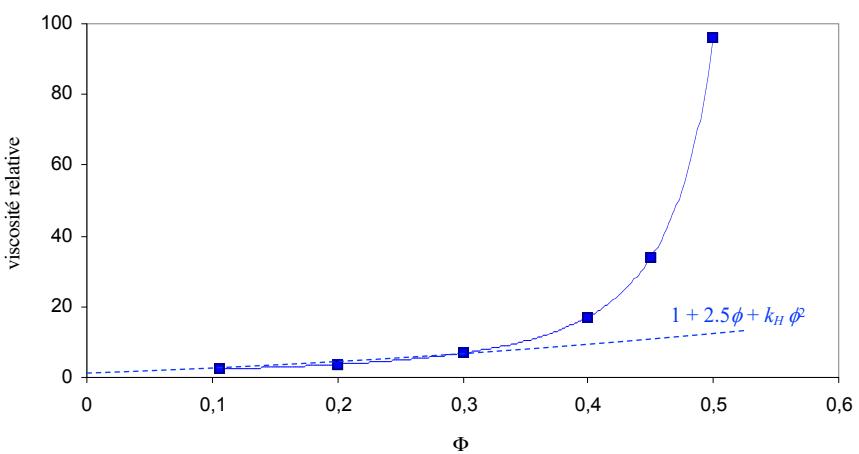
Loi d'Einstein modifiée $\eta_{rel} = 1 + 2.5\phi + k_H\phi^2 + \dots$
 k_H coefficient de Huggins


10

10

Suspensions monodisperses semi-concentrées

Loi d'Einstein modifiée $\eta_{rel} = 1 + 2.5\phi + k_H\phi^2 + \dots$
 k_H coefficient de Huggins


Batchelor et Green (1972) $k_H = 7.6$ pour un écoulement élongationnel
 5.2 pour un cisaillement simple

11

11

Suspensions monodisperses concentrées

12

12

Suspensions monodisperses concentrées

1) Ajout d'une faible fraction $d\phi \ll 1$ de particules dans une suspension avec une concentration ϕ de particules :

$$\eta(\phi + d\phi) \approx \eta(\phi)(1 + [\eta]d\phi) \quad \text{où} \quad [\eta] = \lim_{\phi' \rightarrow \phi} \frac{\eta(\phi') - \eta(\phi)}{\eta_0 \phi} \quad (1)$$

2) Le volume accessible aux particules ajoutées est $1 - \alpha\phi$ (α facteur d'encombrement stérique) et donc :

$$\eta(\phi + d\phi) = \eta(\phi) \left(1 + \frac{[\eta]d\phi}{1 - \alpha\phi} \right) \quad (2)$$

3) On intègre l'équation (2), ce qui donne finalement (α^{-1} représente alors la concentration maximale de particules) :

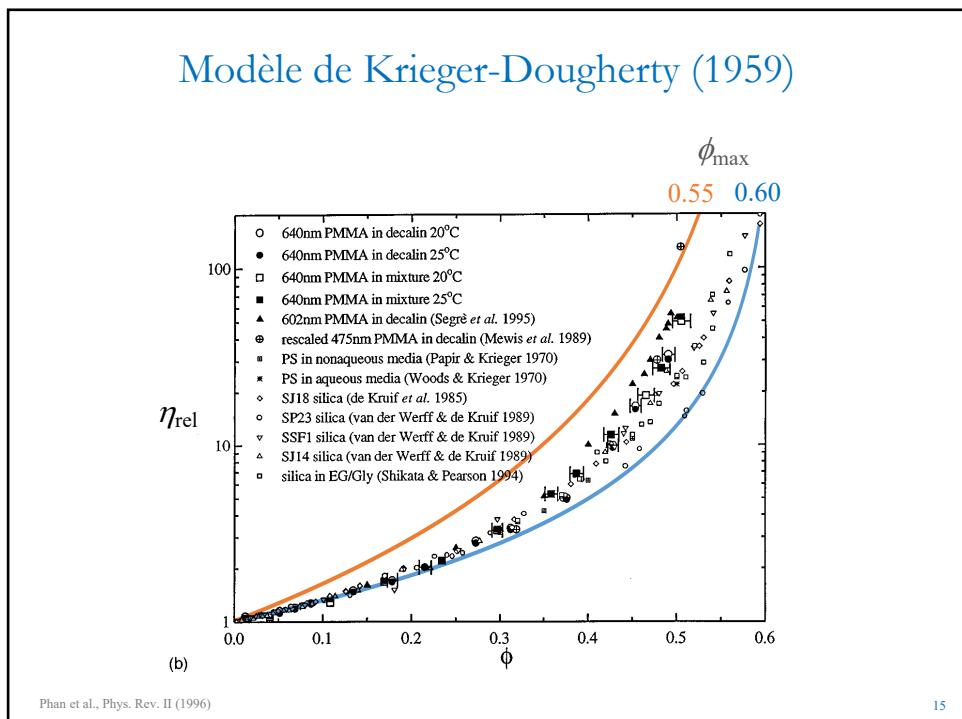
$$\eta = \eta_0 (1 - \alpha\phi)^{-[\eta]/\alpha} \quad (3)$$

13

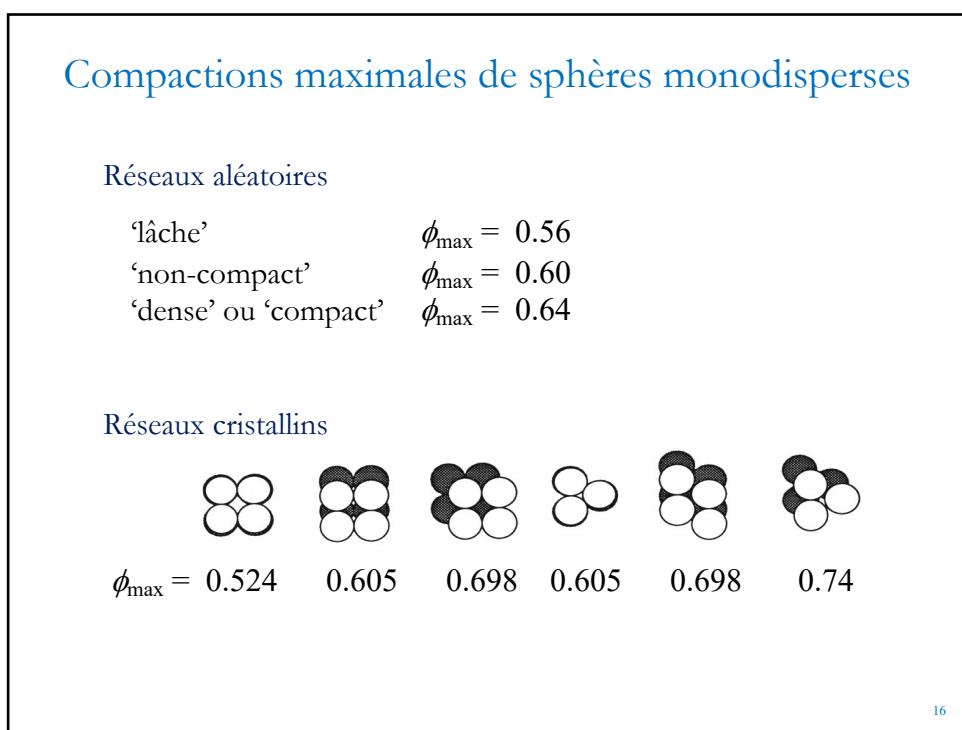
13

Modèle de Krieger-Dougherty (1959)

$$\eta_{rel} = \left(1 - \frac{\phi}{\phi_{max}} \right)^{-[\eta]\phi_{max}}$$


avec $[\eta] = 2.5$ pour des sphères monodisperses

Paramètres influents


- Granulométrie (*suspensions bidisperse ou polydisperse*)
- Forme des particules (*fibres, plaquettes ...*)
- Charges électrostatiques (*cas des suspensions colloïdales*)

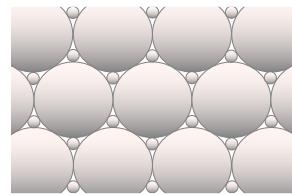
14

14

15

16

Influence de la granulométrie


Suspensions de sphères bidisperses concentrées

2 tailles de particules $\rightarrow \phi_{\max} \nearrow$

$$\eta_{rel}(\phi, \lambda, \xi) = \left(1 - \frac{\phi}{\phi_{\max}(\lambda, \xi)}\right)^{-\beta}$$

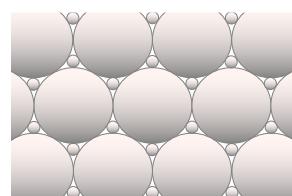
$$\lambda = d_p/d_g$$

(rapport de diamètres des petites et grandes particules)

$$\xi = \frac{V_p}{V_p + V_g} = \frac{\phi_p}{\phi_p + \phi_g}$$

(concentration relative des petites particules)

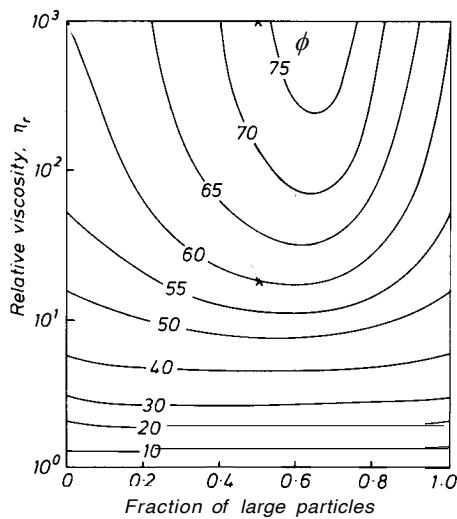
17

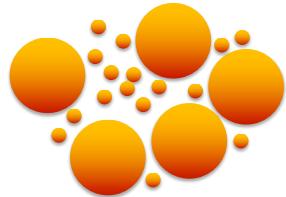

17

Influence de la granulométrie

Suspensions de sphères bidisperses concentrées

2 tailles de particules $\rightarrow \phi_{\max} \nearrow$

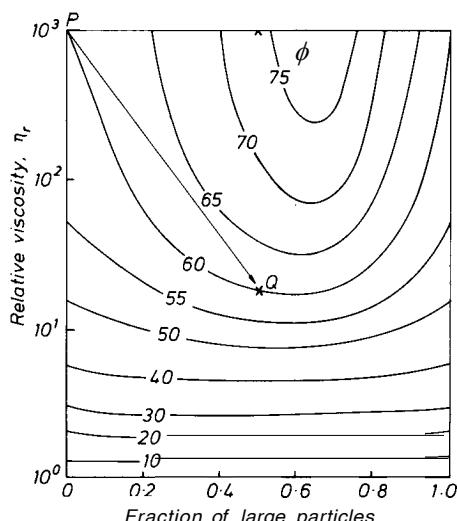

$$\eta_{rel} = \left(1 - \frac{\phi_1}{\phi_{\max,1}}\right)^{-[\eta_1]\phi_{\max,1}} \left(1 - \frac{\phi_2}{\phi_{\max,2}}\right)^{-[\eta_2]\phi_{\max,2}}$$


18

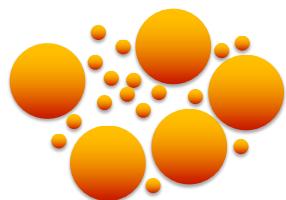
18

Influence de la granulométrie

Viscosité de suspensions bi-disperses avec un rapport de taille des particules de 5:1



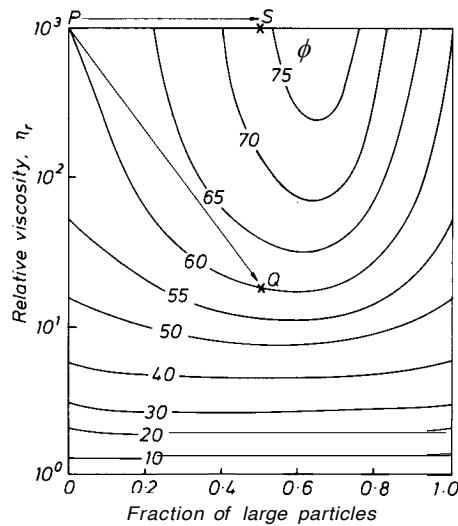
Barnes, Hutton & Walters, An introduction to rheology, Elsevier (1989)


19

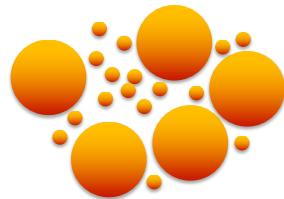
19

Influence de la granulométrie

Viscosité de suspensions bi-disperses avec un rapport de taille des particules de 5:1


P → Q : réduction de la viscosité d'un facteur 50 d'une suspension avec 60 %vol de particules en passant d'une suspension monodisperse à une suspension bi-disperse (50/50)
(‘Effet de Farris’)

Barnes, Hutton & Walters, An introduction to rheology, Elsevier (1989)


20

20

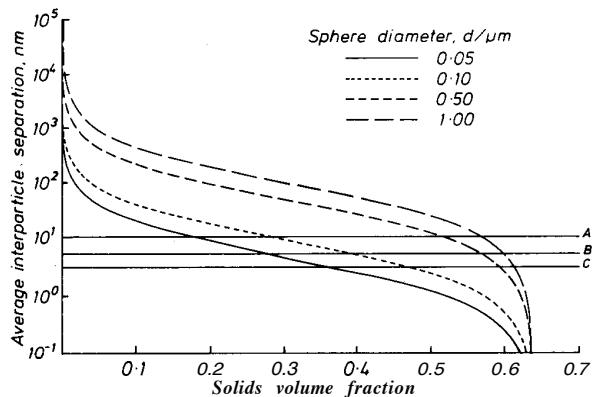
Influence de la granulométrie

Viscosité de suspensions bi-disperses avec un rapport de taille des particules de 5:1

P → S : augmentation de 15 %vol possible sans augmentation de la viscosité en passant d'une suspension monodisperse à une suspension bi-disperse (50/50)

Barnes, Hutton & Walters, An introduction to rheology, Elsevier (1989)

21


21

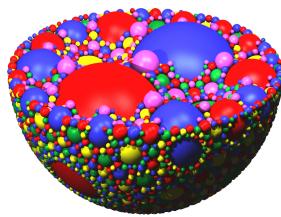
Distance entre particules

$$\frac{\bar{h}}{d} = \left[\left(\frac{1}{3\pi\phi} + \frac{5}{6} \right)^{\frac{1}{2}} - 1 \right]$$

\bar{h} : distance moyenne entre 2 particules

d : diamètre des particules

The horizontal lines show twice the distance over which various interparticle forces typically operate:


- (A) Electrostatic forces in aqueous suspensions with low salt levels
- (B) Steric forces originating from adsorbed macromolecules
- (C) Steric forces originating from adsorbed nonionic detergents

Barnes, Hutton & Walters, An introduction to rheology, Elsevier (1989)

22

22

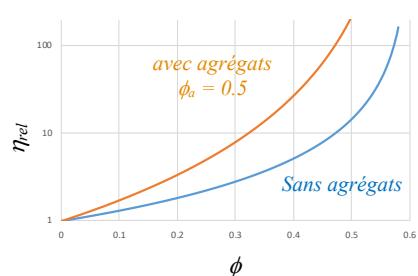
Appolonius

23

23

Suspensions concentrées avec formation d'agrégats

$$\eta_{rel} = \left(1 - \frac{\phi}{\phi_{max}}\right)^{[\eta] \frac{\phi_{max}}{\phi_a}}$$

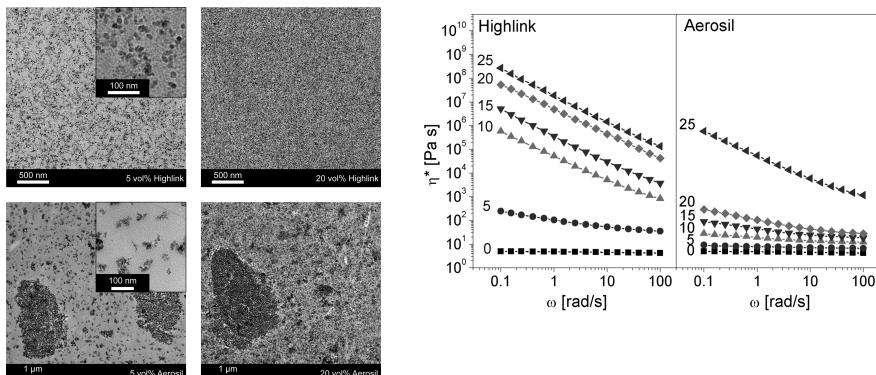


fraction volumique des agrégats $\phi_a = \frac{V_s}{V_s + V_L}$

V_s somme des volumes des sphères formant l'agrégat

V_L volume du solvant dans l'agrégat

$V_s + V_L$ volume total de l'agrégat

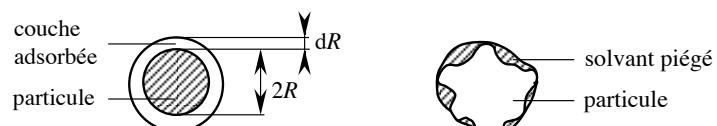


24

24

Suspensions concentrées avec formation d'agrégats

Suspensions de nanosilices



Geiser et al., Macromolecules (2010)

25

25

Solvation

$$V_{eff} = V_{part} \left(1 + \frac{3dR}{R} \right) \longrightarrow \phi_{solv} = \left(1 + \frac{3dR}{R} \right) \phi_{sec}$$

suspensions diluées

$$\eta_{rel} = 1 + 2.5 \left(1 + \frac{3dR}{R} \right) \phi_{sec}$$

suspensions concentrées

$$\eta_{rel} = \left(1 - \frac{\left(1 + \frac{3dR}{R} \right) \phi_{sec}}{\phi_{max}} \right)^{-2.5 \phi_{max}}$$

26

26

Effet électro-visqueux

Suspensions colloïdales diluées : effet électro-visqueux primaire

Présence de charges → Déformation de la double couche ionique sous cisaillement → $\eta \nearrow$

Correction de l'expression d'Einstein :

$$\eta = \eta_0 \left(1 + 2.5\phi \left[1 + \frac{1}{\sigma\eta_0 a^2} \left(\frac{\zeta\epsilon}{2\pi} \right)^2 \right] \right)$$

σ conductivité

ζ potentiel de surface

ϵ permittivité du fluide suspendant

27

27

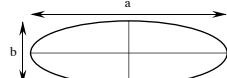
Effet électro-visqueux

Suspensions colloïdales concentrées : effet électro-visqueux secondaire

Prise en compte des interactions inter-particulaires :

→ Répulsion et recouvrement des doubles couches

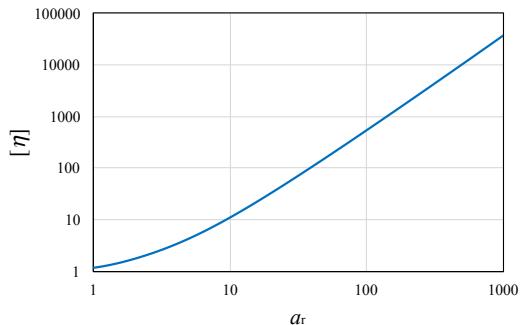
→ $\phi_{\max} = f(\kappa^{-1})$ dans l'expression de Krieger (où κ^{-1} représente la longueur de Debye)


28

28

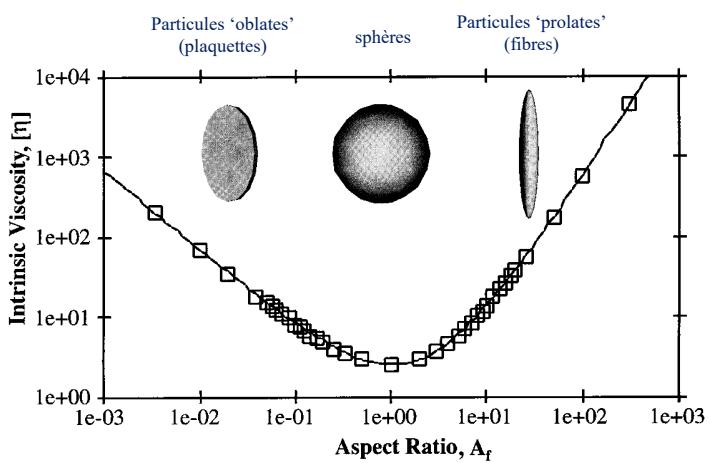
Particules non-sphériques

Ellipse :


- Axe majeur a
- Axe mineur b
- $a > b$
- Rapport de forme $a_r = a/b$

Equation de Simba $[\eta] = \frac{a_r^2}{15(\ln(2a_r) - \lambda)} + \frac{a_r^2}{5(\ln(2a_r) - \lambda + 1)} + \frac{14}{15}$

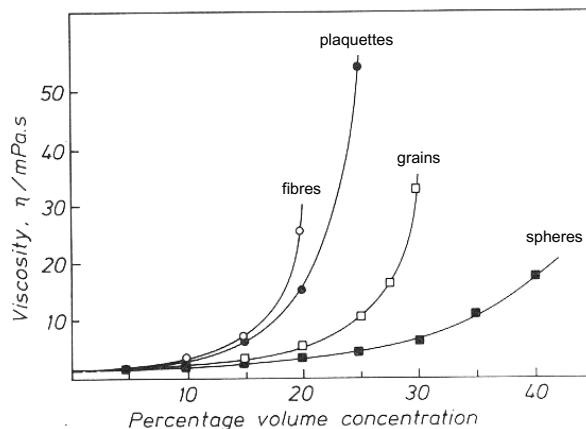
Coefficient de forme


$$\lambda = \frac{a_r^2 - 1}{a_r^2 + 1}$$

29

29

Particules non-sphériques


Bicerano, Douglas, Brune, Polymer Reviews (1999)

30

30

Influence de la forme sur la viscosité

Suspensions aqueuses

Barnes, Hutton & Walters, An introduction to rheology, Elsevier (1989)

31

31

Influence de la forme sur la viscosité

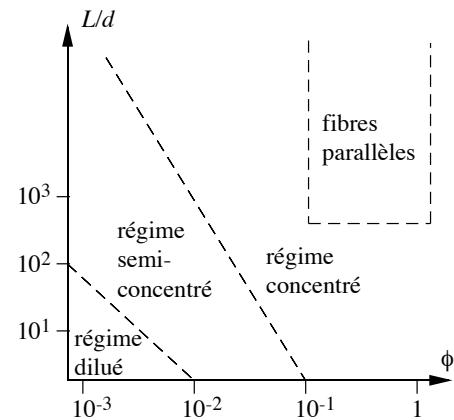
System	$[\eta]$	ϕ_m	$[\eta]\phi_m$	Reference
Spheres (submicron)	2.7	0.71	1.92	de Kruif et al. (1985)
Spheres (40 pm)	3.28	0.61	2.00	Giesekus (1983)
Ground gypsum	3.25	0.69	2.24	Turian and Yuan (1977)
Titanium dioxide	5.0	0.55	2.77	Turian and Yuan (1977)
Laterite	9.0	0.35	3.15	Turian and Yuan (1977)
Glass rods (30×700 pm)	9.25	0.268	2.48	Clarke (1967)
Glass plates (100×400 pm)	9.87	0.382	3.77	Clarke (1967)
Quartz grains (53–76 pm)	5.8	0.371	2.15	Clarke (1967)
Glass fibres:				
axial ratio-7	3.8	0.374	1.42	Giesekus (1983)
axial ratio-14	5.03	0.26	1.31	Giesekus (1983)
axial ratio-21	6.0	0.233	1.40	Giesekus (1983)

Barnes, Hutton & Walters, An introduction to rheology, Elsevier (1989)

32

32

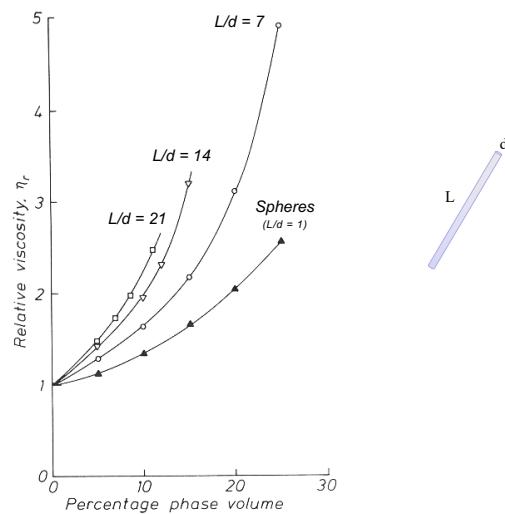
Suspensions de fibres


Nombres de fibres par unité de volume représentatif N (longueur L , diamètre d)

$$\text{- Dilué : } N < 1 \quad \phi < \left(\frac{L}{d}\right)^{-2}$$

$$\text{- Semi-concentré : } 1 < N < 60$$

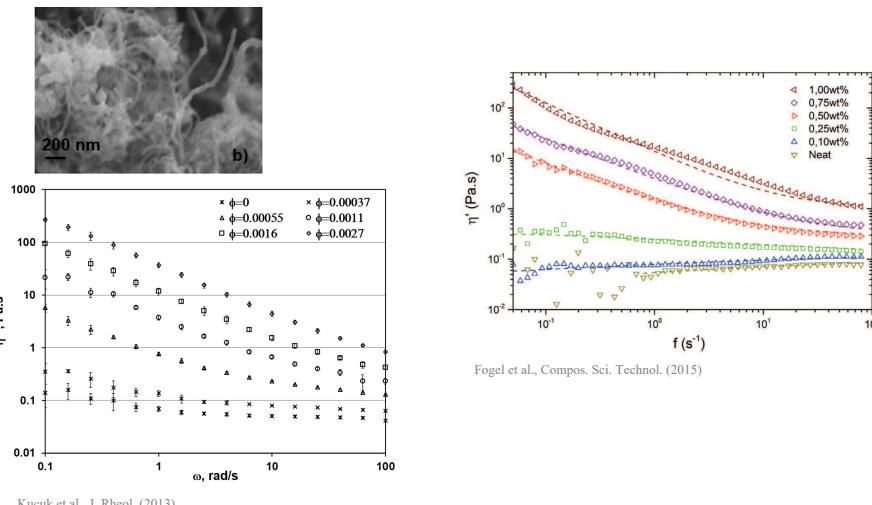
$$\left(\frac{L}{d}\right)^{-1} < \phi < \left(\frac{L}{d}\right)^{-2}$$


$$\text{- Concentré : } N > 60 \quad \phi > \left(\frac{L}{d}\right)^{-1}$$

33

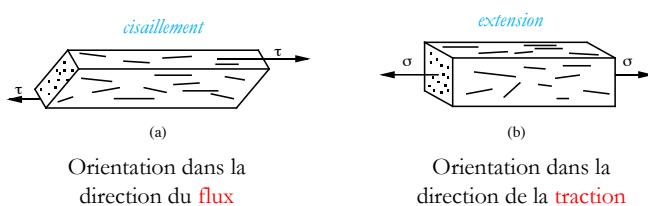
33

Influence de la forme sur la viscosité


Barnes, Hutton & Walters, An introduction to rheology, Elsevier (1989)

34

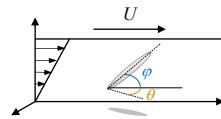
34


Influence de la forme sur la viscosité

Suspensions de nanotubes de carbone avec $L/d \gg 1'000$

35

Orientation des fibres


36

36

Orientation des fibres

Equations de Jeffery (1923)

- Bilan des forces et des moments sur une particule
- Centre de gravité se déplace avec le fluide

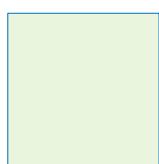
$$\tan \varphi = -r \tan \omega t$$

$$\tan \theta = C a_r (a_r^2 \cos^2 \varphi + \sin^2 \varphi)^{-1/2}$$

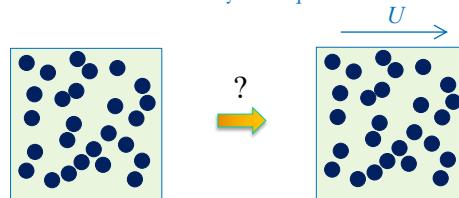
$$\omega = a_r / (a_r^2 + 1)$$

C constante d'orbite varie entre :

$C = 0$ (axe de symétrie parallèle à la vorticité non-perturbée)


$C = \infty$ (axe dans le plan perpendiculaire à la vorticité non-perturbée)

37

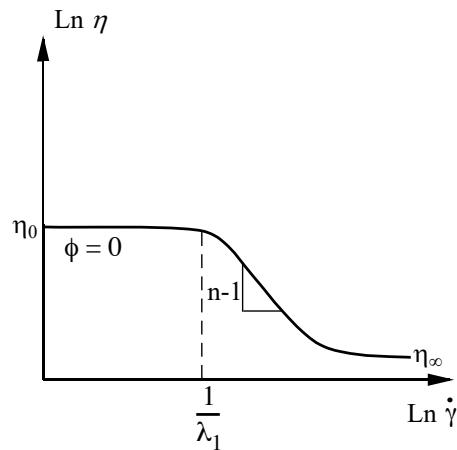

37

Rhéologie des suspensions

Effets statiques

Effets dynamiques

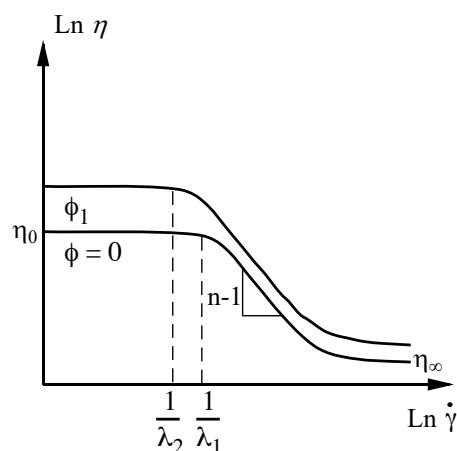
Effets d'interaction statiques, la viscosité tend à augmenter, car les particules introduisent une augmentation de la dissipation d'énergie.


En dynamique, quand on cisaille la suspension que se passe-t-il ?

- effets hydrodynamiques
- frottements des particules, contacts, etc.
- ségrégation, etc.

38

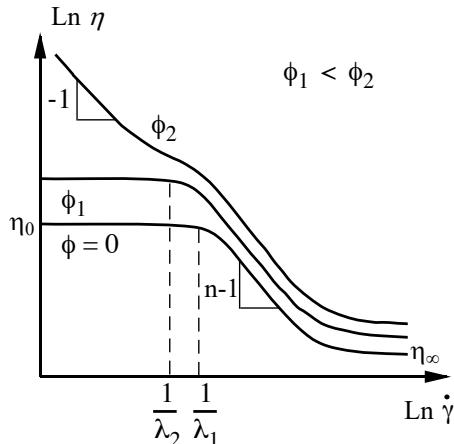
38


Effets dynamiques et seuil d'écoulement

39

39

Effets dynamiques et seuil d'écoulement

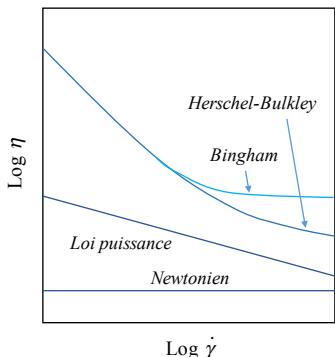


- augmentation de la viscosité
- augmentation du temps de relaxation (λ)

40

40

Effets dynamiques et seuil d'écoulement


- augmentation de la viscosité
- augmentation du temps de relaxation (λ)
- disparition du plateau Newtonien à forte concentration
- apparition d'une contrainte seuil d'écoulement

Il faut appliquer une certaine force pour que l'écoulement puisse avoir lieu → dentifrice

41

41

Lois de comportement

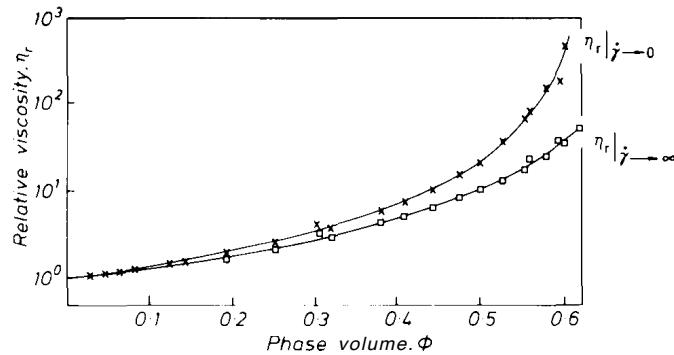
Modèle de Bingham

$$\begin{cases} \dot{\gamma} = 0 & \text{si } \tau < \tau_0 \\ \eta = \frac{\tau_0}{\dot{\gamma}} + \eta_N & \text{si } \tau > \tau_0 \end{cases}$$

Modèle de Herschel-Bulkley

$$\eta = \frac{\tau_0}{\dot{\gamma}} + \kappa \dot{\gamma}^{n-1}$$

Modèle de Carreau-Yashuda


$$\eta = \frac{\tau_0}{\dot{\gamma}} + \eta_0 \left[1 + (\lambda_c \dot{\gamma})^k \right]^{(n-1)/k} \quad \text{si } \tau > \tau_0$$

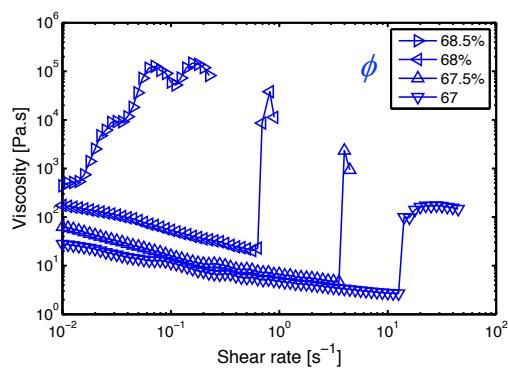
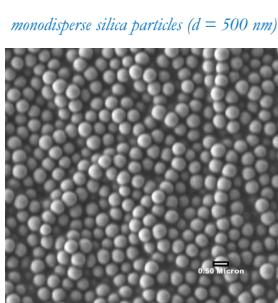
Comportement solide $\tau = G\dot{\gamma}$ si $\tau \leq \tau_0$

42

42

Effets dynamiques

Relative viscosity versus phase volume for monodisperse latices. Data points are those of Krieger (1972) and de Kruif et al. (1985) combined.

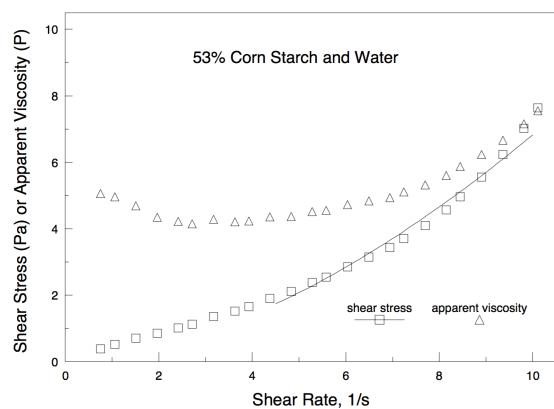
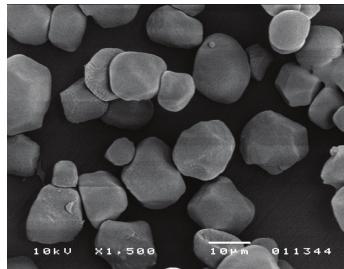


The upper line relates to the zero shear-rate asymptotic relative viscosity, and is the best fit to the Krieger-Dougherty with $\phi_{\max} = 0.632$ and $[\eta] = 3.133$.

The lower line relates to the high shear-rate asymptotic value of relative viscosity and is the best fit to eqn. (7.7), with $\phi_{\max} = 0.708$ and $[\eta] = 2.710$.

Barnes, Hutton & Walters, An introduction to rheology, Elsevier (1989)

43

Suspensions rhéoépaississantes

Soutrenon, PhD thesis (EPFL, 2013)

44

44

Suspensions de maïzena

Géométrie cône-plan, 4°, 60 mm diamètre

Szymanowska-Powalowska et al., Biotechnologia 2012
Steffe, Rheological methods in food process engineering, Freeman Press (1996)

45

Modes de comportement

Variables augmentées	η augmente	η baisse
Vitesse de cisaillement	Rhéoépaisissant ou Dilatant (sable mouillé, suspension céramique)	Rhéofluidifiant ou Pseudoplastique (boues, peinture)
Temps	Rhéopeptique (latex, sable)	Thixotrope (sables mouvants, ketchup)

46

46

Modes de comportement

Variables augmentées	η augmente	η baisse
Vitesse de cisaillement	Rhéoépaississant ou Dilatant (sable mouillé, suspension céramique)	Rhéofluidifiant ou Pseudoplastique (boues, peinture)
Temps	Rhéopeptique (latex, sable)	Thixotrope (sables mouvants, ketchup)

47

47

Modes de comportement

Variables augmentées	η augmente	η baisse
Vitesse de cisaillement	Rhéoépaississant ou Dilatant (sable mouillé, suspension céramique)	Rhéofluidifiant ou Pseudoplastique (boues, peinture)
Temps	Rhéopeptique (latex, sable)	Thixotrope (sables mouvants, ketchup)

48

48

Modes de comportement

Variables augmentées	η augmente	η baisse
Vitesse de cisaillement	Rhéoépaisissant ou Dilatant (sable mouillé, suspension céramique)	Rhéofluidifiant ou Pseudoplastique (boues, peinture)
Temps	Rhéopeptique (latex, sable)	Thixotrope (sables mouvants, ketchup)

49

49

Modes de comportement

Variables augmentées	η augmente	η baisse
Vitesse de cisaillement	Rhéoépaisissant ou Dilatant (sable mouillé, suspension céramique)	Rhéofluidifiant ou Pseudoplastique (boues, peinture)
Temps	Rhéopeptique (latex, sable)	Thixotrope (sables mouvants, ketchup)

50

50